表 5.	6 DiCarlo 汽車日銷售量	變異數的計算過程	Ē	•		
x	$x - \mu$	$(x-\mu)^2$	f(x)	$(x-\mu)^2 f(x)$		
0	0 - 1.50 = -1.50	2.25	0.18	2.25(0.18) = 0.4050		
1	1 - 1.50 = -0.50	0.25	0.39	0.25(0.39) = 0.0975		
2	2 - 1.50 = 0.50	0.25	0.24	0.25(0.24) = 0.0600		
3	3 - 1.50 = 1.50	2.25	0.14	2.25(0.14) = 0.3150		
4	4 - 1.50 = 2.50	6.25	0.04	6.25(0.04) = 0.2500		
5	5 - 1.50 = 3.50	12.25	0.01	12.25(0.01) = 0.1225		
1.2500						
$\sigma^2 = \Sigma(x - \mu)^2 f(x)$						

②變異數

雖然可藉由期望值瞭解隨機變數的平均值,但我們經常也需要衡量隨機變數 的分散程度或變異性。就如同在第3章用變異數(variance)表示一組資料的分散程 度,現在我們利用變異數來表達隨機變數的分散程度或變異性,離散隨機變數的變 異數的數學公式如下。

變異數是隨機變數 與平均數差的平方 的加權平均數,權 重為機率值。

離散隨機變數的變異數

$$\operatorname{Var}(x) = \sigma^2 = \Sigma (x - \mu)^2 f(x)$$
(5.5)

如式 (5.5) 所示,變異數公式的重要部分是離差 $x-\mu$,離差是用來衡量任意隨機變 數與期望值或平均數 μ 的距離。而變異數的計算是將離差取平方之後再與各隨機變 數的機率函數值相乘,最後將各乘積加總即為變異數,記作 Var(x) 及 σ^2 ,兩者皆 可用來表示隨機變數的變異數。

表 5.6 是 DiCarlo 汽車公司日銷售量之機率分配的變異數計算過程。由該表可 知其變異數為 1.25。標準差 (standard deviation) 定義為變異數的正平方根,記作 σ 。因此,該汽車公司日銷售數量的標準差為:

$$\sigma = \sqrt{1.25} = 1.118$$

標準差與隨機變數有相同的單位 (σ =1.118 輛),因此更常被用來衡量隨機變數的變 異性。這是因為變異數 σ^2 的單位是衡量單位的平方,在解釋上較為困難。

る 題

方法

15. 隨機變數 x 的機率分配如下所示。

x	f(x)	
3	0.25	
6	0.50	
9	0.25	

a. 計算 x 的期望值 E(x)。
b. 計算 x 的變異數 σ²。
c. 計算 x 的標準差 σ。
16. 隨機變數 y 的機率分配如下所示。

192

у 2	$f(\mathbf{y}) = 0.20$	
$\frac{1}{4}$	0.30	
7	0.40	
8	0.10	

a. 計算 *E*(y)。

b. 計算 Var(y) 和 σ。

應用

17. 義務救難服務隊每天接到的求救電話在 0 通到 5 通之間。求救電話通數的機率 分配如下所示。

求救電話通數	機率
0	0.10
1	0.15
2	0.30
3	0.20
4	0.15
5	0.10

a. 電話通數的期望值為何?

b. 電話通數的變異數與標準差為何?

SELF test

18. 美國住屋調查報告提出下列資料,資料中顯示主要城市的自有住宅及出租住宅 的臥室數目資料 (www.census.gov, March 31, 2003)。

	房屋數目(千戶)				
臥室數目	臥室數目 出租 自住				
0	547	23			
1	5012	541			
2	6100	3832			
3	2644	8690			
4間(含)以上	557	3783			

a. 定義隨機變數 x 為出租住宅之臥室數目,請編製此隨機變數的機率分配 [令 x
 =4表示擁有4間(含)以上臥室]。

b. 請計算(a) 中隨機變數 x 的期望值及變異數。

- c. 定義隨機變數 y 為自有住宅之臥室數目,請編製此隨機變數的機率分配 [令 y =4 表示擁有 4 間 (含) 以上臥室]。
- d. 請計算(c)中隨機變數 y 的期望值及變異數。

e. 比較出租及自有住宅的臥室數目後,請說明你的觀察結果。

- 19. NBA 會對所屬的每個隊伍提供許多不同的統計數據。其中包括投籃命中率及三 分球命中率。2004 年球季,29 支 NBA 球隊的 2 分球命中率是 0.44,3 分球命 中率則是 0.34 (www.nba.com, January 3, 2004)。
 - a. 投2分球的期望值為何?
 - b. 投3分球的期望值為何?
 - c. 如果 2 分球的命中率高於 3 分球,為何教練允許某些球員在有機會時就投 3 分球?請以期望值解釋之。

20. Newton 汽車保險公司的損害保險理賠狀況如下所示。

理賠金額 (\$)	機率
0	0.85
500	0.04
1000	0.04
3000	0.03
5000	0.02
8000	0.01
10000	0.01

a. 利用理賠金額的期望值決定損益兩平的保險費。

- b.保險公司每年收取 \$520 的保費,對投保人而言,其投保損害保險的期望值為何(提示:保險公司平均理賠金額減投保保費)?為什麼保戶要購買此一保險?
- 21. 資訊系統 (IS) 資深主管及中階經理工作滿意度分數的機率分配表示如下。分數 範圍由最低的1分(非常不滿意)到最高的5分(非常滿意)。

	機率			
工作滿意度 分數	資訊系統 資深主管	資訊系統 中階經理		
1	0.05	0.04		
2	0.09	0.10		
3	0.03	0.12		
4	0.42	0.46		
5	0.41	0.28		

a. 資深主管工作滿意度分數的期望值為何?

b. 中階經理工作滿意度分數的期望值為何?

- c. 計算資深主管和中階經理工作滿意度分數的變異數。
- d. 計算兩類員工工作滿意度分數機率分配的標準差。

e. 比較資深主管及中階經理整體工作滿意程度的差異。

22. 某產品的市場需求量每月皆不相同,其需求狀況如下所示。該表是根據過去兩年來每月的市場需求狀況加以彙總而得。

統計學 Statistics for Business and Economics

需求量	機率	
300	0.20	
400	0.30	
500	0.35	
600	0.15	

a. 若該公司以每月的期望需求量決定生產量,則應生產多少?

- b. 假設每單位產品的售價為 \$70,成本為 \$50。則若公司生產量如 (a) 所示,但 實際需求量為 300 單位時,該公司賺或賠多少錢?
- 23.2002 年紐約市住房及空屋調查顯示,共有 59,234 個出租單位受到房租管制,在 房租平穩化規範中的出租單位則有 236,263。這些出租單位內的房客數目的機率 分配情形如下 (www.census.gov, January 12, 2004)。

房客人數	房租管制	房租平穩化
1	0.61	0.41
2	0.27	0.30
3	0.07	0.14
4	0.04	0.11
5	0.01	0.03
6	0.00	0.01

a. 不同形式出租單位的房客數目的期望值是多少?

b. 不同形式出租單位的房客數目的變異數是多少?

c. 請對住在不同形式出租單位的房客人數進行比較。

24. J. R. Ryland 電腦公司正考慮一擴廠計畫。該公司負責人必須決定該建中型或大型廠房。由於新產品的需求量並不確定,因此估計其需求量為低、中、高的機率分別為 0.20, 0.50 和 0.30。令 x 與 y 分別表示中型及大型規模擴廠之每年利潤 (單位:\$1000),該公司的規劃分析人員估計不同生產規模下的利潤如下所示。

		中型規模 擴廠之利潤		大型規模 擴廠之利潤	
		x	f(x)	у	f(y)
	低	50	0.20	0	0.20
需求量	甲高	150 200	0.50	300	0.50

- a. 請計算兩種不同擴廠規模下的期望利潤。在期望利潤最大化的考量下,何種 擴廠規模較佳?
- b.請計算兩種不同擴廠規模下的變異數。在風險或不確定情況最小的目標下, 何種擴廠規模較佳?

5.4 二項機率分配

二項機率分配為應用相當廣泛的離散機率分配。與此分配有關的多重步驟實